top of page


Detecting, Analyzing and Reporting Physiological Processes of the Lower Extremities

Thermetry is an intelligent adjunct tool for professionals to analyze infrared data related to physiological concerns of the lower extremities (e.g.  poor circulation, vascular concerns, neuropathy, infections, ulcers and inflammation) and maximizing their decisions about treatment and services options through objective, quantifiable feedback.  This innovative technology intelligently detects anatomical regions of the lower extremities and  measures thousands of infrared data points within specific zones of targeted physiological processes.  Data is analyzed and comprehensive reports are automatically generated in a user-friendly format using interpretive visual analytic tools (including anatomical illustrations, charts and graphs) which is presented in an organized, user-friendly format.  


podiatric process.png



Infrared imaging is a non-invasive, non-contact technique of analyzing skin surface temperature fluctuations related to normal and abnormal physiological changes and metabolic processes.  Research shows that skin temperature fluctuations occur in instances of inflammation [1], irritation [2] and infection [3] with detectable thermal gradient changes up to 3° C to 4° C ​ [4].  Infrared imaging has been accepted as an adjunct tool that can aid professionals in the detection of regional concerns of lower-extremities well in advance of visible signs of observable concerns. Some of these issues include the detection of peripheral artery disease and poor circulation [5], foot ulcers and infections [6], diabetic and peripheral neuropathy [7] and joint inflammation [8].   Based on biology principles of bilateral symmetry and the use of infrared imaging to quantify asymmetry [9], physiological zones are compared to symmetrical counterpart to identify thermal abnormalities.

1.  Gurjarpadhye, A.A., Parekh, M.B., Dubnika, A., Rajadas, J., Inayathullah, M. Infrared Imaging Tools for Diagnostic Applications in Dermatology. SM J Clin Med Imaging.  2015; 1(1): 1–5. 

2.  Ratajczak B, Boerner E. Application of Thermovision in Assessment of Superficial Tissue Temperature Changes Under the Influence of 1 MHz and 3 MHz Ultrasounds Wave. Journal of Thermal Analysis and Calorimetry. 2015;120:269–75.

3.  Bird HA, Ring EF. Thermography and Radiology in the Localization of Infection. Rheumatololgy. 1978;17:103–6

4.  Fierheller M, Sibbald RG. A Clinical Investigation into the Relationship Between Increased Periwound Skin Temperature and Local Wound Infection in Patients with Chronic Leg Ulcers. Adv Skin Wound Care. 2010;23:369–79.

5.  Bagavathiappan,T., Saravanan T., Philip J, Jayakumar T., Raj B., Karunanithi R, Panicker T.M., Korath M.P., Jagadeesan K.  Infrared Thermal Imaging for Detecting Vascular Disorders. J Med Phys. 2009; 34(1): 43-7.

6.  van Netten, J., van Baal, J., Liu, C., van der Heijden, F., Bus, A.  Infrared Thermal Imaging for Automated Detection of Diabetic Foot Complications. J Diabetes Sci Technol. 2013 Sep; 7(5): 1122–1129. 

7.  Monali, D., Ramesh, R. Early Detection of Peripheral Neuropathy Using Thermography:  A Review.  IJCA Proceedings on National Conference on Digital Image and Signal Processing.  2015 April; 1: 11-14.

8.  Lasanen, R. Infrared Thermography in the Evaluation of Skin Temperature:  Applications in Musculoskeletal Conditions.  Publications of the University of Eastern Finland Dissertations in Forestry and Natural Sciences.  2015;  No 186.

9.  Uematsu S.E., Jankel WR, Kozikowski J., Trattner M. Quantification of Thermal Asymmetry. Part 1: Normal Values and Reproducibility. J Neurosurg, 1988; 69: 552–5.

bottom of page